CHROM, 18 799

## Note

Use of modified molecular connectivity indices to predict retention indices of monosubstituted alkyl, alkoxy, alkylthio, phenoxy and (phenylthio)pyrazines

HIDEKI MASUDA and SATORU MIHARA\*

Ogawa & Co., Ltd., 6-32-9 Akabanenishi, Kita-ku, Tokyo 115 (Japan)
(Received May 1st, 1986)

We have estimated that the retention index (I) of a pyrazine derivative can be represented as the sum of the increments for substituent groups and the retention index of pyrazine<sup>1</sup>.

The concept of molecular connectivity ( $\chi$ ) was introduced by Randić<sup>2</sup> and extensively developed by Kier and Hall<sup>3,4</sup> through the topological branching index. It has previously been demonstrated that a good correlation exists between chromatographic parameters, such as I and  $\chi$ , for a series of similar compounds<sup>5,6</sup>.

The present paper deals with our investigation of the relationship between connectivity indices and retention indices of monosubstituted pyrazines on OV-101 and CW-20M columns.

## **EXPERIMENTAL**

Pyrazine and methyl- and ethylpyrazine were commercially available (Pyrazine Specialties). All other monoalkylpyrazines (4–14, Table I) were prepared as described in the literature<sup>7</sup>. Alkoxy- and (alkylthio)pyrazines (15, 16, 18 and 19) were prepared by the reaction of chloropyrazine with the appropriate sodium alkoxide or sodium thioalkoxide<sup>8</sup>. Phenoxy- and (phenylthio)pyrazine (17 and 20) were prepared from chloropyrazine by reaction with sodium phenoxide and sodium thiophenoxide, respectively<sup>9</sup>.

The first-order connectivity index  $(^1\chi)$  was calculated according to the Kier and Hall's³ equation:

$$^{1}\chi = \Sigma(\delta i \cdot \delta j)^{-\frac{1}{2}} \tag{1}$$

where  $\delta i$  and  $\delta j$  are the number of non-hydrogen bonds of the bonded carbon atoms i and j.

The gas chromatographic conditions were as described in the previous paper<sup>1</sup>.

NOTES

TABLE I

RETENTION INDICES FOR MONOSUBSTITUTED PYRAZINES ON CW-20M AND OV-101

D = Filiph - Filiph color

| No. | <i>R</i>                                                          | $I_{obsd.}^{OV}$ | $I_{calcd.}^{OV}$ | D         | $I_{obsd.}^{CW}$ | $I_{calcd.}^{CW}$ | D   |
|-----|-------------------------------------------------------------------|------------------|-------------------|-----------|------------------|-------------------|-----|
| 1   | Н                                                                 | 710              | 710               | 0         | 1179             | 1179              | 0   |
| 2   | CH <sub>3</sub>                                                   | 108              | 801               | 0         | 1235             | 1235              | 0   |
| 3   | $C_2H_5$                                                          | 894              | 890               | -4        | 1300             | 1299              | -1  |
| 4   | $C_3H_7$                                                          | 986              | 989               | 3         | 1374             | 1388              | 14  |
| 5   | $C_4H_9$                                                          | 1088             | 1088              | 0         | 1474             | 1476              | 2   |
| 6   | $C_5H_{11}$                                                       | 1192             | 1188              | -4        | 1575             | 1565              | -10 |
| 7   | $C_6H_{13}$                                                       | 1293             | 1288              | -5        | 1668             | 1653              | -15 |
| 8   | CH(CH <sub>3</sub> ) <sub>2</sub>                                 | 949              | 954               | 5         | 1316             | 1335              | 19  |
| 9   | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                 | 1043             | 1050              | 7         | 1406             | 1424              | 18  |
| 10  | (CH2)2CH(CH3)2                                                    | 1157             | 1150              | <b>—7</b> | 1530             | 1512              | -18 |
| 11  | CH <sub>2</sub> CH(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub> | 1151             | 1146              | <b>-5</b> | 1527             | 1522              | 5   |
| 12  | CH <sub>2</sub> CH(CH <sub>3</sub> )C <sub>3</sub> H <sub>7</sub> | 1240             | 1245              | 5         | 1606             | 1610              | 4   |
| 13  | CH(CH <sub>3</sub> )C <sub>2</sub> H <sub>5</sub>                 | 1040             | 1037              | -3        | 1394             | 1388              | -6  |
| 14  | $CH(CH_3)C_3H_7$                                                  | 1133             | 1136              | 3         | 1471             | 1476              | 5   |
| 15  | OCH <sub>3</sub>                                                  | 877              | 864               | -13       | 1306             | 1281              | -25 |
| 16  | OC <sub>2</sub> H <sub>5</sub>                                    | 959              | 968               | 9         | 1348             | 1372              | 24  |
| 17  | $OC_6H_5$                                                         | 1415             | 1427              | 12        | 2104             | 2123              | 19  |
| 18  | SCH <sub>3</sub>                                                  | 1076             | 1088              | 12        | 1600             | 1607              | 7   |
| 19  | SC <sub>2</sub> H <sub>5</sub>                                    | 1148             | 1151              | 3         | 1635             | 1642              | 7   |
| 20  | $SC_6H_5$                                                         | 1606             | 1594              | -12       | 2400             | 2392              | -8  |

## RESULTS AND DISCUSSION

The relationship between the  $^{1}\chi$  values and the observed retention indices of the homologous series of monosubstituted pyrazines on the OV-101 column ( $I_{\rm obsd.}^{\rm OV}$ ; see Table I) was observed, to be linear (Fig. 1).

Fig. 2 shows that an approximately linear relationship exists between the retention indices for *n*-alkanes ( $C_nH_{2n+2}$ , n=7-24) and their  $^1\chi$  values. This relationship is approximated by eqn. 2:

$$I = 202.6^{-1}\chi \tag{2}$$

In this case, the relationship between the I and  $\delta$  value may be given by eqn. 3:

$$I = 202.6\Sigma(\delta i \cdot \delta j)^{-\frac{1}{2}} \tag{3}$$

In order to determine the retention indices for various monosubstituted pyrazines from their structures, the  $\delta^{\text{st.ph.}}$  values on a stationary phase were determined from the  $I_{\text{obst.}}^{\text{st.ph.}}$  values and eqn. 3.

First of all, when the  $I_{obsd.}^{st.ph.}$  values of benzene ( $I_{obsd.}^{OV} = 655$ ,  $I_{obsd.}^{CW} = 954$ ) are substituted in eqn. 3, the  $\delta^{OV}$  and  $\delta^{CW}$  values for = C- (benzene, pyrazine) are determined to be 1.855 and 1.274, respectively. Then, substituting the  $\delta^{st.ph.}$  values for



Fig. 1. Correlation of the observed retention indices for monosubstituted pyrazines on OV-101 column  $(P_{obsd.}^{OV})$  with the first-order molecular connectivity indices  $(^{1}\chi)$ .

= C- (pyrazine, benzene) and the  $I_{\text{obsd}}^{\text{st.ph.}}$  value of pyrazine in eqn. 3 yields the  $\delta^{\text{st.ph.}}$  value for = N- (pyrazine). The  $\delta^{\text{st.ph.}}$  values obtained in this way are shown in Table II along with  $\delta$  values.



| TABLE II                                                                                       |
|------------------------------------------------------------------------------------------------|
| DELTA VALUES $(\delta,  \delta^{\text{ov}}  \text{AND}  \delta^{\text{cw}})$ FOR VARIOUS ATOMS |

| Group              |                                  | δ | $\delta^{ov}$ | $\delta^{CW}$ |
|--------------------|----------------------------------|---|---------------|---------------|
| -CH <sub>3</sub>   |                                  | 1 | 1.019         | 1.143         |
| −CH <sub>3</sub>   | Substituted at pyrazine ring     | 1 | 0.776         | 0.799         |
| -CH <sub>2</sub> - |                                  | 2 | 2.038         | 2.286         |
| -CH-               | Iso-                             | 3 | 3.255         | 4.210         |
| -cH-               | Sec-                             | 3 | 4.001         | 6.625         |
| -CH-               | Others                           | 3 | 3.575         | 4.201         |
| = C-               | Pyrazine and benzene             | 3 | 1.855         | 1.274         |
| = C-R              | Substituted pyrazine and benzene | 4 | 2.855         | 2.274         |
| = N-               | Pyrazine                         | 3 | 1.462         | 0.695         |
| -0-                | -                                | 2 | 2.581         | 2.730         |
| -S                 |                                  | 2 | 0.574         | 0.385         |

Replacing the  $\delta$  values in eqn. 3 by their corresponding  $\delta^{\text{st.ph.}}$  values, we obtained the following expression:

$$I^{\text{st.ph.}} = 202.6\Sigma (\delta^{\text{st.ph.}} \cdot \delta^{\text{st.ph.}})^{-\frac{1}{2}}$$
(4)

It can be seen from eqn. 4 that as the  $\delta^{\text{st.ph.}}$  value becomes smaller, the  $I^{\text{st.ph.}}$  value becomes larger. The  $\delta^{\text{OV}}$  value for the saturated alkyl groups (CH<sub>3</sub>, -CH<sub>2</sub>- and -CH-) are smaller than the corresponding  $\delta^{\text{CW}}$  values. The saturated alkyl groups contribute more to the retention indices on the OV-101 column than to those on the CW-20M column. That is to say, the non-polar solutes interact more strongly with a non-polar stationary phase than with a polar phase.

The  $\delta^{\text{st.ph.}}$  values for a methyl group which is substituted at a pyrazine ring are smaller than those for other methyl groups. Such results are due to the hyperconjugation effect of the methyl group at the pyrazine ring.

The  $\delta^{\text{st.ph.}}$  values for  $-\dot{\text{CH}}$ - groups follow the order iso < others < sec. Since the  $I^{\text{st.ph.}}$  values depend on the intermolecular forces, a smaller surface area yields a larger  $\delta^{\text{st.ph.}}$  value.

The  $\delta^{\text{CW}}$  values for the polar groups, carbon atoms containing a double bond, nitrogen atoms and sulphur atoms are smaller than the corresponding  $\delta^{\text{OV}}$  values, except for the oxygen atom. The results are explained on the basis of the stronger attractive forces between polar groups and a polar phase (CW-20M) than those between polar groups and a non-polar phase (OV-101).

The  $\delta^{\text{st.ph.}}$  value for the -S- group is much smaller than that for the -O- group. The results are compatible with the fact that the boiling points of sulphur-containing pyrazines are higher than those of corresponding oxygen-containing pyrazines. Table I lists the observed and calculated retention indices ( $I_{\text{obsd.}}$  and  $I_{\text{calcd.}}$ ) for monosub-

NOTES 377

stituted pyrazines on OV-101 and CW-20M columns. The difference between the observed and the calculated values (D) is decreased when a non-polar stationary phase (OV-101) is used.

## REFERENCES

- 1 S. Mihara and N. Enomoto, J. Chromatogr., 324 (1985) 428.
- 2 M. Randić, J. Am. Chem. Soc., 97 (1975) 6609.
- 3 L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- 4 L. B. Kier and L. H. Hall, J. Pharm. Sci., 65 (1976) 1806.
- 5 J. Bermejo, J. S. Canga and O. M. Gayol, Int. J. Environ. Anal. Chem., 11 (1982) 271.
- 6 A. H. Stead, R. Gill, A. T. Evans and A. C. Moffat, J. Chromatogr., 234 (1982) 277.
- 7 A. F. Bramwell, L. S. Payne, G. Riezebos, P. Ward and R. D. Wells, J. Chem. Soc. (C), 1971, 1627.
- 8 H. Masuda, M. Yoshida and T. Shibamoto, J. Agric. Food Chem., 29 (1981) 944.
- 9 T. H. Parliment and M. F. Epstein, J. Agric. Food Chem., 21 (1973) 714.